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ABSTRACT 
 
The development of three-dimensional (3D) seismic models for the crust and upper mantle has traditionally focused 
on finding one model that provides the best fit to the data, while observing some regularization constraints. Such 
deterministic models, however, ignore a fundamental property of many inverse problems in geophysics: 
nonuniqueness. It is likely that if a model can be found to satisfy given datasets, an infinite number of alternative 
models will exist that satisfy the datasets equally well. Our solution to the inverse problem of developing a seismic 
model for the Barents Sea, given various datasets, is therefore a probabilistic model, a posterior distribution of 
models that satisfy the data to the same degree. We use a Markov Chain Monte Carlo algorithm to sample the 
unknown posterior distribution, which describes the ensemble of models that are in agreement with prior 
information and the datasets. An example of prior information used in this work is the extent of regions with limited 
sediment coverage. The datasets we use are thickness constraints, velocity profiles, gravity data, surface-wave group 
velocities, and body-wave travel times. The model introduced here for the crust and upper mantle structure of the 
European Arctic is parameterized by a set of one-dimensional (1D) models positioned at the nodes of an arbitrary 
mesh. Two linear functions in the sediment layer, three in the crystalline crust, and three in the mantle are used to 
describe the seismic parameters (i.e., Vp, Vs, and density) as a function of depth. This allows changes of seismic 
parameters within the sediments, the crystalline crust, and the upper mantle without introducing artificial 
discontinuities that would result from parameterizing the structure using layers with constant seismic parameters. 
The samples drawn from the posterior distribution using a Markov Chain Monte Carlo technique form our 
probabilistic model. Analyzing this ensemble of models that fit the data allows us to estimate a mean model and the 
standard deviation for the model parameters, i.e., their uncertainty. Maps of sediment thickness and thickness of the 
crystalline crust derived from the posterior distribution are in good agreement with knowledge of the regional 
tectonic setting. The predicted uncertainties, which are equally important as the absolute values, correlate well with 
the variation in data coverage and data quality in the region. The real power of a probabilistic model, however, lies 
in predicting observables and their uncertainties. A probabilistic model allows estimation of seismic-event location 
uncertainties that take into account uncertainties in the velocity model and the inability to absolutely identify the 
onset of the arrival associated with a phase. 
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OBJECTIVES 

The area of interest for this study is the European Arctic, in particular the Barents Sea and surrounding regions such 
as the Norwegian-Greenland Sea, the Southern Eurasian Basin, Novaya Zemlya, the Kara Sea, the East European 
Lowlands, the Kola Peninsula, and the Arctic plate boundary (Figure 1). The complex geology of the region, 
encompassing oceanic crust, continental shelf regions, rift basins, and old cratonic crust and the nonuniform 
coverage of the region by data with varying levels of uncertainty, makes the European Arctic a challenging setting 
for any imaging technique and therefore an ideal environment for the development and application of a probabilistic 
approach to seismic imaging.  

The aim of this study was to develop a probabilistic seismic model, i.e., sample the posterior distribution consisting 
of the ensemble of models that are all in agreement with the data. The datasets used in this work are thickness 
constraints, velocity profiles, gravity data, surface-wave group velocities, and body-wave travel times. The 
stochastic inversion methodology that has been further developed in this study has been used previously by 
Pasyanos et al. (2006) to derive a geophysical model for the Yellow Sea and Korean Peninsula region, given 
surface-wave group velocities, body-wave travel times, receiver functions, and gravity data. 

The project has achieved three objectives. First, we have developed a probabilistic seismic model for the European 
Arctic that not only harnesses the information available in more datasets than used in previous models but also 
employs an improved model parameterization. Second, we have shown how a probabilistic model can be used in 
seismic monitoring to estimate location uncertainties that are caused by model uncertainties. Third, the introduction 
of improved forward solvers, an arbitrary mesh, and linear transitions to represent structure will facilitate the 
application of the methodology to other regions. 

RESEARCH ACCOMPLISHED 

The development of a probabilistic seismic model for the European Arctic involved improving the methodology 
employed by Pasyanos et al. (2006). The introduction of a new model parameterization (Figure 2) that allows for an 
arbitrary mesh and uses two linear transitions in the sediments and three in the crystalline crust and upper mantle to 
represent the seismic parameters (Vp, Vs, and density) made it necessary to develop new forward solvers for the 
various datasets. The parameterization of structure associated with every 1D model represents a trade-off between 
trying to describe the structure as accurately as possible and limiting the number of parameters to avoid having to 
search a model space that is unnecessarily large. The parameters are not completely independent of each other due to 
the constraints imposed on the prior distribution (see below). The node spacing of 83 km was chosen based on the 
expected resolution of the data and the computational resources available. 

When developing regional seismic models, one often uses layers with constant seismic parameters to represent 
structure (e.g. Pasyanos et al., 2006 and Ritzmann et al., 2007). For deep sedimentary basins like the East Barents 
Sea Basin, however, the rate of increase of Vp, Vs, and density decreases with depth, and the seismic parameters at 
the bottom of the basin are comparable to those of the underlying basement. Two layers that allow for a linear 
increase of the seismic parameters allow us to model this behavior better than two layers with constant seismic 
parameters. 

The datasets used in this study were described in a previous MRR contribution (Hauser et al., 2009). We therefore 
focus here on the probabilistic model, its application, and the inversion methodology.  

Markov Chain Monte Carlo Algorithm 

The Markov Chain Monte Carlo (MCMC) algorithm employed here is a derivative of the Metropolis algorithm by 
Metropolis et al. (1953) as described by Mosegaard and Tarantola (1995). MCMC algorithms sample the model 
space at a rate proportional to the posterior probabilities, a process known as importance sampling, thereby 
empirically reconstructing the unknown posterior distribution. They achieve this by moving through model space 
according to the posterior probabilities for these models, thereby performing a guided search and focusing on 
regions that better fit the prior information and the data. In contrast, a Monte Carlo algorithm samples the model 
space purely randomly. The definition of which models are accessible from a given model when constructing the 
Markov Chain is critical for the success of a probabilistic inversion. If we perturb the model too much, we will be 
sampling the model space randomly instead of performing a guided search. On the other hand, if we perturb the 
model too little, we might not explore the model space sufficiently. 
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0BFigure 1. Simplified tectonic map of the region after Ritzmann et al. (2007) and Bird (2003). The plate 
boundary is given by the brown line and the continent-ocean boundary by the dashed blue line. 
Beige areas represent the major sedimentary basins in the region. The cross section along which we 
will examine our probabilistic model in Figure 5 is outlined in red. 

 

 
 
1BFigure 2. Parameterization of the target region for this study. (a) The red stars are the earthquakes in the 

target region, according to the Global CMT catalog (1971–2008), and seismic stations used in this 
study are marked by orange triangles. The blue and green diamonds show the distribution of the 
1D profiles used to describe the structure. For the blue diamonds, the starting model is based on 
CRUST 2.0 (Bassin et al., 2000); for the green diamonds, it is based on the crustal model of 
Ritzmann et al. (2007) and the mantle model of Levshin et al. (2007). (b) Diagram showing the 
constant gradient parameterization used to describe the seismic parameters as a function of depth.  
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1BFigure 3. Flowchart showing the MCMC inversion methodology used to derive the probabilistic model. 

As mentioned before, the success of an MCMC methodology relies partly on a mechanism for generating plausible 
models based on the prior information. In a Bayesian formulation, this process is known as sampling the prior 
distribution. The prior distribution is given by the starting model and constraints for the individual parameters. The 
most-basic constraints are the upper and lower limits and the standard deviation for the normal distribution, from 
which we randomly draw new model parameters when perturbing the model. More sophisticated constraints 
employed in this study are ranges for acceptable Vp/Vs and Vp/density ratios, a positive velocity contrast imposed 
across the Moho interface and across the interface between the sediments and the crystalline crust, and a limit on the 
maximum decrease of seismic parameters with increasing depth. Plausible ranges for seismic parameters in the area 
of interest and the relationship between them were derived from previous studies covering the region, in particular 
from Breivik et al. (2002). 

Our MCMC algorithm shown in Figure 3 has two major components: (1) the base sampler, which proposes new 
models by randomly perturbing the current model, while observing the rules for the prior distribution; and (2) the 
datasets against which proposed models are tested. If all the models proposed by the base sampler are accepted, one 
recovers the prior distribution. The aim is to recover the posterior distribution, and proposed models are therefore 
tested against data. The datasets are tested in sequence, and a proposed model is added to the posterior set if it fits 
the data equally well or better for all the stages than the previous model that was added to the posterior set. A model 
with a worse fit to the data might also be accepted to the posterior set but with a probability dependent on the 
decrease in fit relative to the previous accepted model. In other words, the worse the fit to the data the more likely it 
is that the model is rejected. Accepting models with a worse fit to the data with a certain probability means that an 
MCMC algorithm can avoid a situation where the guided search might get trapped in a local minimum. For each 
chain we also randomly swap a subset of nodes in the starting model to ensure that we are exploring the model space 
sufficiently. 
 
Probabilistic Seismic Model 

Two separate runs of our MCMC algorithm with different seeds for the random number generator were used to 
generate our probabilistic model. In practice this means that we have explored the model space with two different 
chains starting at different points in model space. Once convergence is reached, however, the two chains are 
statistically similar. Our probabilistic model is based on a combination of the last 1/3 of the two chains, with each 
consisting of 12,000 iterations. Our samples of the posterior distribution are given by 4,000 models, where every 
second model is taken from the same chain, thus we are mixing the chains. We determined an average model to 
compare the results of this study to other studies of the same region. The real power of a probabilistic model lies 
however in the fact that it describes the distribution of models that fit the data, as we will see later in the location 
example.  
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2BFigure 4. Depth to Moho: (a) Mean model obtained in this study, (b) CRUST 2.0 after Bassin et al. (2000), (c) 

BARENTS50 after Ritzmann et al. (2007), and (d) isostatic Moho of Ebbing et al. (2007).  

Figure 4 shows the depth to Moho in this study, CRUST 2.0 (Bassin et al., 2000), BARENTS50 (Ritzmann et al., 
2007) and for an isostatic Moho computed by Ebbing et al. (2007). It is important to keep in mind that the different 
models have different spatial resolutions; our model, for example, has a node spacing of 83 km, while CRUST 2.0 
uses a 2-by-2–degree grid. This makes it necessary to resample the models for this comparison. Unlike the other 
models, our probabilistic model also provides estimates for the uncertainties, thus we can compute a standard 
deviation in addition to the mean of our samples of the posterior distribution. We have hatched the areas where the 
standard deviation on the Moho exceeds 3 km, indicating where this parameter is poorly constrained. The models 
are generally similar, with some notable differences. For example, most models see more complexity within the 
major tectonic provinces than the relatively simple CRUST 2.0 model. Also, the Moho recovered by BARENTS50 
appears more detailed than the Moho recovered in the present study. This comes as no surprise when one takes into 
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account that BARENTS50 has a spatial resolution of 50 km. The models differ the most from each other around 
Novaya Zemlya and in the Kara Sea. It is interesting that this is also where the uncertainties in the depth to Moho 
are generally larger than 3 km in our study. The isostatic modeling of Ebbing et al. (2007) suggests, as expected, a 
shallower and smoother Moho than the other, seismically based models.  

 

3BFigure 5. Depth to basement: (a) Mean model obtained in this study, (b) CRUST 2.0 after Bassin et al. (2000), 
(c) BARENTS50 after Ritzmann et al. (2007), and (d) compilation of depth to basement by Smelror 
et al. (2009), based on the work by Skilbrei (1991,1995) and Gramberg et al. (2001). 

A similar comparison among the models for the depth to basement is given in Figure 5. Here we compare the mean 
of our probabilistic model with CRUST 2.0 (Bassin et al., 2000), BARENTS50 (Ritzmann et al., 2007) and a 
compilation of depth to basement by Smelror et al. (2009) derived from magnetic and seismic data based on the 
work by Skilbrei (1991,1995) and Gramberg et al. (2001). We have again hatched areas in our map indicating 
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regions with poor constraint, where the standard deviation in depth to basement exceeds 2.0 km. In contrast to the 
different Moho results, the depth-to-basement topography varies significantly among the studies. There are 
differences in the overall depth and shape for the major basins between our study and the other studies. In a deep 
basin the sediments at the bottom of the basin become chemically compacted or weakly metamorphosed, making 
their seismic parameters comparable to those of the underlying basement. This means that datasets used in this study 
are not very sensitive to the position of this interface between the sediments and the crystalline crust. This also 
correlates with the relatively large uncertainties for the southern end of the East Barents Sea Basin. 

 
4BFigure 6. West-east cross section along the great circle path shown in Figure 1. The top panel shows Vp, and 

the bottom panel shows the uncertainty in Vp. In the bottom panel, interfaces are colored according 
to the uncertainty in depth. 

Figure 6 shows a west-to-east cross section through our probabilistic model. Unlike cross sections farther north 
across the western continental margin, we find a relatively rapid transition in crustal thickness and see an increase in 
crustal thickness associated with Novaya Zemlya. The highest uncertainty in depth to Moho lies below the Kara Sea. 
This is related to the weak constraints on the Moho here: gravity data and a velocity profile with a relatively high 
uncertainty, with no body waves sampling the Moho. We clearly recover the East Barents Sea and Kara Sea basin. 
The sedimentary basins in the southwestern Barents Sea, on the other hand, are only 10s of kilometers wide. The 
node spacing of 83 km used in this study means that we cannot recover these basins. What we are able to recover is 
the fact that the sedimentary layer is on average thicker if there are several sedimentary basins a few 10s of 
kilometers wide.  

The sediments on the epicontinental Barents Shelf have significantly higher velocities than sediments covering the 
oceanic crust. This feature of our model can be linked to the uplift of the region in the Neogene and the repeated 
phases of glaciation in the Barents Sea during the late Pliocene and Pleistocene (Smelror et al., 2009). Uplift and 
glaciation cause erosion of the sediments covering the Barents Shelf and the deposition of large amounts of young 
sediments into major submarine fans along the western and northern margin. These young sediments are less 
consolidated and have, as a consequence, lower seismic velocities when compared to the older sediments covering 
the Barents Shelf. The uppermost sediments in the Kara Sea Basin show slightly lower velocities than the uppermost 
sediments in the East Barents Sea Basin. This correlates with the interpretation that only during the maximum extent 
of glaciation in the late Pleistocene did the ice sheet reach into the Kara Sea (Smelror et al., 2009). Sediments in the 
Kara Sea have therefore experienced less erosion, leaving less compacted sediment exposed at the seafloor, possibly 
together with deposits from other periods of glaciation. 
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Probabilistic Earthquake Location 

The nonlinear problem of seismic event location using body-wave travel times is often solved using nonlinear 
iterative approaches. However, a poor station distribution and a complex 3D velocity structure contribute to the 
nonlinearity of the location problem and create potential instabilities. The potential failure of linearization, together 
with the need for more comprehensive location uncertainty information in the form of a probability density function, 
has led to the formulation of numerous probabilistic approaches (e.g., Kennett and Sambridge, 1992; Billings, 1994; 
Lomax et al., 2000). Location uncertainty is caused by pick uncertainties (i.e., the inability to accurately estimate 
onset time for a phase) and uncertainties in the velocity models. Most estimates for location uncertainty do not 
however take into account the uncertainties in the model used to predict the travel times. They are solely based on 
pick uncertainties. A probabilistic model, on the other hand, allows a prediction of observables and their 
uncertainties. 

The distribution of an observable (i.e., its value and uncertainty), given a probabilistic model, can be recovered by 
calculating its values for every model belonging to the posterior set that defines the probabilistic model. Similarly, it 
is possible to obtain an estimate for the location uncertainty of a seismic event due to model uncertainty by locating 
the event for all the models that compose the posterior set. Here we use an MCMC approach to approximate the 
posterior distribution for the origin time and location of an earthquake. The maximum of the posterior distribution 
then defines the hypocenter location and origin time. 
 
 

 
5BFigure 7. Probabilistic location of an earthquake, taking model uncertainties into account: (a) station 

distribution, (b) distribution of average path velocities for regional phases for two stations used in 
the location example, and (c) hypocenter and origin time of the earthquake computed for each of 
the 4,000 models forming our probabilistic model. The mean location is given by the black 
diamond. The points are colored according to the deviation from the mean origin time of our set of 
locations. The black circle marks the location of the event computed using a 1D velocity model and 
a fixed depth of 0 km, and the error ellipse is given by the gray shaded area. 

We use an earthquake in the western Barents Sea to investigate the influence of model uncertainties on location 
uncertainties. Figure 7a shows the station distribution, and Figure 7b shows the distribution of the mean path 
velocities, between the event and two selected stations. For longer paths that reside primarily in the mantle, the mean 
velocity is less influenced than for shorter paths that reside in the crust. We have located the earthquake for each of 
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the 4,000 models in the posterior distribution. Figure 7c shows the 4,000 locations obtained and thereby provides an 
estimate for the location uncertainty from model errors alone, together with an event location obtained using a 
regional 1D velocity model. All stations available for the location of this event lie to the west of the earthquake. This 
results in both the error ellipse for the 1D velocity model solution and the cloud of locations being elongated in the 
west-east direction. We observe a linear trend between late deep-event locations to the southwest and early shallow 
locations to the northeast. Bondár et al. (2004) showed that for excellent station coverage, depth and origin time are 
more sensitive to the velocity model than the epicenter location. We find that for an uneven station distribution as 
shown here, the epicenter location seems to be equally sensitive to the velocity model as to the origin time and 
depth. 
 
 
CONCLUSIONS AND RECOMMENDATIONS 

We have successfully employed a probabilistic approach for the development of a data-driven regional seismic 
model for the European Arctic. We have compared the mean model of our posterior distribution with other models 
that cover the region and find that it captures the features that can be resolved with a node spacing of 83 km. Our 
probabilistic model not only provides images of the subsurface, together with estimates of uncertainties, it also 
allows for the prediction of observables and uncertainties. This can be used to derive seismic event location 
uncertainties from model uncertainties and can in the future be used for location algorithms that take model 
uncertainties in addition to uncertainties in onset time into account. 

The introduction of an arbitrary mesh to represent structure means that future applications of the methodology could 
include optimizing the mesh as part of the inversion. Trans-dimensional MCMC algorithms (e.g., Green, 1995) 
provide a framework for situations where the optimum number and distribution of model parameters is unknown. 
Such an algorithm would allow optimizing the distribution and number of nodes used to describe structure as part of 
the inversion and thereby account for the differences in data quality and data density between the eastern and 
western part.  

The success of a probabilistic technique for the development of a regional seismic model relies on a mechanism to 
propose plausible models. In this context, choosing plausible ranges for the ratios between seismic parameters is as 
important as the ranges for individual values. Ultimately, one is only interested in testing models for their fit to the 
data if they are plausible from a geological, geodynamical, and compositional point of view. The primary 
application of the type of models developed here is the location of seismic events. On the other hand, a probabilistic 
framework where we would invert for composition and temperature instead of velocity and density is feasible and 
could be a valuable tool for understanding the nature of the upper mantle in the European Arctic and in particular of 
the eastward-dipping high-velocity anomaly under the Barents Sea and Kara Sea (Ritzmann and Faleide, 2009). 
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